Corn residue increases proportionally with corn yields, creating management challenges for growers. To help address those, agronomists and scientists from DuPont Pioneer and DuPont Industrial Biosciences teamed up to conduct research on the impact of residue removal on the long-term agronomic and environmental integrity of fields. Stover is also evaluated for cellulosic ethanol production, which has benefits for both farmers and biofuel producers.
In fields where partial stover removal is an option, a sustainable stover harvest program provides value to the grower without negatively impacting the health and productivity of the soil.
Individual field evaluation is necessary as stover removal is not an option for every field. In some highly productive systems, residue may even be excessive as a result of increased yields, improved stalk quality and reduced tillage practices. Highly productive, relatively flat, continuous corn fields are best suited for stover removal and tend to see the greatest agronomic benefits. In these fields, corn stover production generally exceeds the minimum amount needed to maintain soil health and productivity, making sustainable stover harvest a viable option.
In high yielding areas of the Corn Belt, many growers are chopping stalks, increasing tillage or using a combination of these two methods to further stalk decomposition. In areas where residue management is a critical factor in production decisions, partial stover harvest could expand rotation and farming options. For example, reducing excess residue could allow increased flexibility in managing corn following corn, particularly in the northern Corn Belt where residue decomposition tends to be slower. Stover removal also may eliminate tillage operations and other practices used primarily for residue management, resulting in substantial production cost savings.