It looks like more precision equipment is coming to apple and orange growers. You may not want to compare them except when it comes to the equipment you use to grow them though.
Two groups of researchers at Carnegie Mellon University’s Robotics Institute have received a total of $10 million in grants from the U.S. Department of Agriculture (USDA) to build automated farming systems. One is for apple growers and one is for orange growers, but both are designed to improve fruit quality and lower production costs.
The systems use sensors on autonomous robotic vehicles or at fixed sites within the orchards to gather a multitude of data about tree health and crop status. Robotic vehicles will be used to administer precise amounts of water or agricultural chemicals to specific areas or trees. The vehicles also will be used to automate routine tasks such as mowing between tree rows.
The projects were funded this fall through the USDA’s new Specialty Crop Research Initiative. The Comprehensive Automation for Specialty Crops (CASC) Program, led by Sanjiv Singh, research professor of robotics, received a four-year, $6 million grant to develop systems for the apple industry. The Integrated Automation for Sustainable Specialty Crop Farming Project, led by Tony Stentz and Herman Herman of the Robotics Institute’s National Robotics Engineering Center (NREC), received a three-year, $4 million grant to develop systems for the citrus industry. Both project grants will be matched dollar for dollar by industry, state governments and other funding sources.
“We are taking automation to a level never before demonstrated in an agricultural setting,” said Herman of the NREC project. “This will provide an early look at how the automated farm may someday operate and promises to deliver insights and lessons far beyond what should be expected from small demonstrations of autonomous scouts.”
“Mobile sensors and computer tracking will enable growers to monitor their orchards in unprecedented detail,” said Singh. “Growers will receive early warning of diseases and insect infestations, as well as continuous updates on crop status. With this information, growers can make timely decisions that will save them money and improve the quality of their crop.”